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The fingering instability of an interface between two immiscible fluids in a Hele Shaw 
cell is simulated numerically. The algorithm used is based on a transcript<ion of the 
equations of motion for the interface in which it formally becomes a generalized 
vortex sheet. The evolution of this sheet is computed using a variant of the 
vortex-in-cell method. The resulting scheme and code make it possible to follow the 
collective behaviour of many competing and interacting fingers well into the 
nonlinear, large-amplitude regime. It is shown that in this regime the evolution is 
controlled essentially by just one dimensionless parameter, the ratio of fluid 
viscosities. The effects of varying this parameter are studied and the results compared 
with experimental investigations. Scaling properties of the average density profile 
across the evolving mixed layer between the two homogeneous fluid phases are 
investigated. Many phenomena are observed that must be characterized as collective 
interactions and thus cannot be understood in terms of flows with just a single finger. 

1. Introduction 
Sharp interfaces, both stable and unstable, in unsteady motion occur frequently 

in fluid mechanics. For an unstable situation small changes in the initial state may 
amplify rapidly to  produce completely different details in interfacial structure a t  
later times. For brevity we shall refer to such behaviour as ‘chaotic’. Indeed, only 
certain average properties of an interface may be reproducible in an experiment. 
Again, an interface between two fluids, along which there is essentially no diffusion, 
may evolve in such a way that substantial entrainment and mixing occurs. Both these 
possibilities, viz a ‘chaotic ’ system with efficient macroscopic (as opposed to 
‘ molecular ’) mixing, are familiar from conventional turbulent flows. 

The equations describing interfaces are generally nonlinear. Furthermore, interfaces 
are usually three-dimensional and can be difficult to visualize and hence to study both 
experimentally and numerically. Analytical investigations of the governing nonlinear 
equations must usually be content with stability considerations for very regular 
configurations, such as flat, circular or spherical interfaces, and to the limit of 
small-amplitude disturbances. 

A relatively simple example of the above type, which, however, still contains many 
ingredients of more complicated systems, is the interface between two immiscible 
fluids in a Hele Shaw cell (Hele Shaw 1898), the celebrated Taylor-Saffman instability 
(Saffman & Taylor 1958). This system is two-dimensional by construction, and it is 
therefore more accessible to numerical calculations. Usually two-dimensionality must 
be enforced by neglecting three-dimensional effects with a consequent loss of realism 
and relevance. In  addition, the Taylor-Saffman instability has considerable import- 
ance for various technological endeavours. 
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The initial motivation in the 1950s to study this instability came from the analogy 
between Hele Shaw flow and flow in a two-dimensional slab of porous medium (see 
Todd 1955). It was observed that, if water was used to drive out residual oil from 
the porous rock in an oilfield, a considerable amount of oil was left in the ground 
when water appeared a t  the producing wells. This disappointing result is believed to 
be in part due to a fingering instability of the oil-water interface. Because of its great 
economic importance, oil-water flow in porous media has been the subject of in- 
tensive study in the petroleum-ngineering literature (see Perkins, Johnston & 
Hoffmann (1965) and other articles in the same journal). These studies have been 
primarily experimental, and their main purpose has been to develop engineering 
correlations for application to a real field situation. Some of the experiments were 
performed in three-dimensional packed-bed models (see e.g. the beautiful pictures of 
a transparent model due to van Meurs 1958), but others employed the Hele Shaw 
cell. 

Fingering in porous media also occurs during gas injection, as used in the 
underground storage of gas, and in water infiltration (Wooding & Morel-Seytoux 
1976). The Hele Shaw fingering mechanism is also thought to be relevant by analogy 
to the form and growth of fingered sheet intrusions in geological formations (Pollard, 
Muller & Dockstader 1975) and to the problem of dendritic growth (Langer 1980). 
The Hele Shaw equations are similar to the ones used to describe the deformation 
of ionospheric plasma clouds (Overman, Zabusky & Ossakow 1983). For a general 
review of two-phase flow in porous media including fingering see Wooding & 
Morel-Seytoux (1976). 

Although the applicability of results for fingering in a Hele Shaw cell to flow under 
actual reservoir conditions, where the flow is three-dimensional and ‘dispersion ’ of 
the interface can occur, is not unquestionable (Wooding & Morel-Seytoux 1976), 
it is to be expected that an investigation of this problem will be helpful to  the 
understanding of many general properties of unsteady interface motion. We share 
the view of Langer (1980) that in order to understand interfacial instability in general 
a ‘detailed analysis of experimentally realizable, physical systems ’ is necessary. 
Another reason for choosing to study Hele Shaw flow is that we have developed a 
useful code for the numerical computation of this type of interface. Thus portions 
of this paper are of interest from a purely methodological point of view. The use of 
the Hele Shaw equations as a model problem for numerical calculation of two- 
dimensional, transient, free boundary problems has previously been stressed by 
Meyer (1981). 

The discussion of interfaces in a Hele Shaw cell is commonly divided into the two 
cases of miscible and immiscible fluids. For immiscible fluids there is a finite surface 
tension that stabilizes small-scale disturbances. For miscible fluids the interdiffusion 
of the fluids has a stabilizing effect. If the velocity of interfacial fingers is much higher 
than the characteristic diffusion velocity, diffusion will not affect the initial shape 
of the fingers, and they should be similar to those of the immiscible case. For a 
discussion of this effect in a packed bed model see Slobod & Thomas (1963). Here 
we consider only immiscible fluids (since that is the case we are capable of calculating 
numerically), but for the reasons just mentioned we believe that some of our 
conclusions are valid for miscible fluids as well. 

An interface in a Hele Shaw cell can be unstable for two reasons. If a heavier fluid 
is on top of a lighter one, the interface is gravitationally unstable. If, owing to 
pumping, a less viscous fluid is made to displace a more viscous one, the interface 
is also Enstable. These two effects can occur simultaneously, and for the equations 
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used here i t  will be shown that they are interrhangeable. This, of course, need not 
be so in general, and we shall discuss a modification of the equations where this is 
not the case. 

One of the first experimental demonstrations of unstable fingering in a Hele Shaw 
cell is due to  Saffman & Taylor (1958). They performed a linear stability analysis of 
the flat interface, neglecting surface tension, and found an analytic solution for the 
shape of the single fingers that represented the late stages of their experiments. A 
stability analysis including surface tension was performed by Chuoke, van Mews & 
van der Poel(l959) who also performed experiments both in packed bed models and 
in a Hele Shaw cell. The Saffman-Taylor experiment has since been repeated by 
several investigators (see e.g. Gupta, Varnon & Greenkorn 1973 ; Pitts 1980). Paterson 
(1981 ) has recently investigated radial fingering using immiscible fluids. Rosensweig 
(1982) shows fingering instabilities leading to some remarkable equilibrium patterns 
for ferrofluid in a Hele Shaw cell with forcing by a combination of gravity and a 
gradient of magnetic field. Experiments involving miscible fluids have also been 
performed. Many of the experiments done by researchers primarily interested in 
secondary oil recovery employed miscible fluids, since this situation was considered 
more relevant to actual reservoir conditions. Of particular interest are the experiments 
performed by Wooding (1969), in which miscible oils with rather similar viscosities 
but different densities in a gravitationally unstable Hele Shaw flow are used. The final 
stages in this experiment consist of many long fingers, and the strong suppression 
of small fingers seen in the Saffman-Taylor experiment is not observed. These fingers 
also have a shape different from that of the single Saffman-Taylor finger. Wooding’s 
mixed layer is, furthermore, (more or less) up-down symmetric about the initial 
position of the interface. These differences between the Wooding experiment and the 
Saffman & Taylor experiment are largely due to the difference in the viscosity 
contrast between the two fluids, as we shall demonstrate later. 

The remainder of our paper is set out as follows. I n  $2 we discuss the Hele Shaw 
equations, and, for the case of a single interface between two immiscible fluids, cast 
the problem in terms of the evolution of a vortex sheet. Here we are following the 
work of de Josselin de Jong (1960), but, whereas he simply stated what amounts to 
an algorithm for following interface motion, we present both a comprehensive 
restatement and an implementation. We shall see that the Hele Shaw problem is more 
complicated than the evolution of a simple vortex sheet in two-dimensional, inviscid, 
incompressible flow, because the circulation is constantly changing, but less compli- 
cated than the two-dimensional Rayleigh-Taylor problem with sharp stratification 
(Birkhoff 1954; Baker, Meiron & Orszag 1980). The vortex-sheet strength for Hele 
Shaw flow is given by an integral equation, whereas for the Rayleigh-Taylor problem 
one must solve an auxiliary integrodifferential equation. Various formal observations 
on rescaling the equations of motion are made. In  !$2 we also discuss the numerical 
scheme used to  implement the algorithm. We have chosen to  follow the temporal 
evolution of the interface using the vortex-in-cell scheme described a decade ago by 
Christiansen (1973). This allows us to compute interfaces that have many competing 
fingers, although possibly with some sacrifice of numerical accuracy of very-small-scale 
effects. Section 2 contains a thorough discussion of such methodological points. 

Section 3 presents our results. We have systematically investigated the nature of 
the interface geometry (starting from a predetermined initial disturbance) as the 
governing non-dimensional parameters are varied. The differences observed experi- 
mentally by Saffman & Taylor and by Wooding can now be rationalized. We observe 
various secondary phenomena known from other systems, such as growth and 
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merging of large-scale structures, and, to a lesser extent, the tearing apart of 
structures. The differences in the degree to which these phenomena develop as we 
increase the viscosity contrast across the interface is elucidated. Section 3 concludes 
with a discussion of various averaged quantities that indicate scaling with the width 
of the mixed layer. 

In  $ 4  we discuss and summarize our results and mention some possible extensions. 
Modifications of our model equations to include certain effects of experimental 
significance are also discussed. 

A short account of the work reported here was presented a t  the American Physical 
Society, Division of Fluid Dynamics annual meeting at Rutgers University (Aref & 
Tryggvason 1982). A more complete presentation was given as part of the Workshop 
on Instability Modelling and Front Tracking at Los Alamos National Laboratory ( 1 4  
February 1983). A brief review of the present work and discussion of some extensions 
appears in Aref & Tryggvason (1984). 

2. The numerical algorithm and its implementation 
Frequently in fluid dynamics most of the flow field can be considered irrotational 

and the vorticity non-zero only in some region of finite extent. In  several cases of 
interest the rotational domain is very thin in one direction, and it is a useful 
idealization to neglect its thickness altogether and to model the region of non-zero 
vorticity as a vortex sheet. 

In two dimensions the velocity field U(X, t )  due to a vortex sheet parameterized 
through x’(s, t )  is then given by the integral formula (Batchelor 1967) 

where s is arclength, y ( s , t )  is the vortex-sheet strength and 2 is a unit vector 
perpendicular to the plane of motion. For inviscid fluid of constant density the 
circulation around any material curve is constant according to Kelvin’s theorem (see 
Lamb 1932), so the only changes in the vortex-sheet strength arise from the stretching 
of the sheet. If a two-dimensional vortex sheet is modelled as a row of point vortices, 
the situation is particularly simple : each elemental vortex retains its initial circulation. 
This simplicity of the point-vortex model has attracted many investigators, starting 
with Rosenhand’s (1931) hand calculations of the roll-up of a vortex sheet. For review 
and discussion the reader is referred to Leonard (1980), Moore (1981) and Aref (1983). 
When the fluid is not of constant density, but can still be considered inviscid, Kelvin’s 
theorem is replaced by Bjerknes’ law (Prandtl & Tietjens S934), and vorticity is 
generated as a consequence of the inclination between gradients of pressure and 
density. Again, if the change in density takes place in a thin layer, its thickness may 
be ignored and the layer modelled as a vortex sheet. The equations for the vortex- 
sheet strength now become more complicated integral or integrodifferential equations. 
This model has, nevertheless, also koen the subject of extensive study, both for stably 
stratified fluid (waves) and for unstably stratified fluid (Rayleigh-Taylor instability). 
Early work on the basic formulation and algorithm is due to Birkhoff (1954). Recent 
implementations for the unstable problem may be found in Baker et al. (1980) and 
for the problem of waves in Longuet-Higgins & Cokelet (1976) and in Baker, Meiron 
& Orszag (1982). 

The flow of inviscid fluid with piecewise constant density is not the only system 
that can be calculated by tracking the motion of a vortex sheet. As was pointed out 
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by de Josselin de Jong (1960), the interface between fluids wibh different but constant 
material properties (density and viscosity) in a porous medium can also be modelled 
as a vortex sheet, when the fluids move according to Darcy’s law (Bear 1972). The 
only implementation known to us of this method is the calculation by Meng & 
Thomson (1978). However, that calculation is applicable only to the case of weak 
viscosity stratification. 

Consider then a vortex-sheet interface discretized into point-vortex elements. To 
find the velocity of each point vortex it is in principle necessary to sum over all the 
others, and the number of operations per time step will therefore be O(N2), where 
N is the number of vortices. For a highly distorted interface a large number of point 
vortices is required and computations using (1) and summing interactions pairwise 
become impracticable. However, a different approach is possible. The stream function 
?,b corresponding to the velocity field in eqn. ( 1 )  satisfies a Poisson equation 

where w is the (singular) vorticity distribution. For the case of a highly contorted 
interface it may be more economical to solve this elliptic field equation directly on 
an underlying grid. For domains of regular shape, such as a rectangle, ‘fast’ 
Poisson-equation solvers are available. These make the number of operations 
required to find the stream function, and hence the velocity field, proportional t o  
Ilr@ In M (at worst), where M is the number of grid points in one direction. Since 
the spatial resolution is cut off a t  some fraction of a grid spacing, it is sufficient to 
have approximately one vortex per grid square. Thus, for a highly distorted interface 
(or for several interfaces) N can be taken proportional to M2 and the operation count 
becomes O(N1nN) per time step as compared with O(N2) for direct summation 
schemes. This represents a significant reduction in required computer time. For an 
almost straight interface there will be no reduction since N will then be proportional 
to M (not M2)  and the operation count will actually go up by a factor In M .  The 
method described (and the argument given here) is a straightforward extension of 
the so-called vortex-in-cell algorithm introduced by Christiansen (1973) for homo- 
geneous two-dimensional flows. As mentioned previously, it was first used by Meng 
& Thomson (1978) for the case of a small jump in fluid viscosity across the interface. 
Here the method is extended to and implemented for arbitrary stratification. 

2.1. Basic equations for struti$ed Hele Shaw $ow 

The equations conventionally used to describe flow in a Hele Shaw cell are (Lamb 
1932; Bear 1972) 

(3) 

v -u  = 0. (4) 
In  these equations p is the fluid viscosity, b is the spacing between the plates in the 
Hele Shaw cell, pis the fluid density, g the acceleration due to gravity, and 3 is a unit 
vector directed upward (see figure 1 ) .  The velocity vector u has just two components 
dependent on time and on the coordinates x, y in the plane of the Hele Shaw cell. 
The two-dimensional field u arises by taking an average of the full three-dimensional 
flow field that describes the penetration of the fluid into the narrow space between 
the plates in the Hele Shaw cell. This procedure is explained in detail by Bear (1972). 
The quantity p in (3) is a similarly averaged pressure. Since the solutions to these 
equations wiIl not in general satisfy the no-slip boundary condition at the sides of 
the Hele Shaw cell, an independent singular perturbation analysis is called for in these 
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FIGURE 1.  Sketch defining the notation used. Fluids are labelled 1 (below) and 
2 (above) the interface. 

regions. Such an investigation has been performed by Rigels (1938) and Thompson 
(1968) (see also the short discussion by Lamb 1932). We shall sidestep this problem 
by doing our calculations in a box with periodic boundary conditions in the x-direction 
(see figure l ) ,  and no through-flow conditions a t  the boundaries above and below the 
interface. We have taken care to keep these boundaries sufficiently far from the 
interface so that its evolution is not disturbed by their existence. At the interface 
itself there must in reality also be a three-dimensional boundary layer, but following 
other workers we assume its thickness to be negligible. Later, when we come to discuss 
the experimental results that are available in the literature, we shall have additional 
comments on the applicability of (3) and (4) to a real Hele Shaw apparatus. 

We shall now derive the essential formulae for the vortex sheet representation of 
a stratified flow in a Hele Shaw cell. Let the space between the plates be occupied 
by a system of two immiscible fluids labelled 1 and 2 (see figure 1). The fluids meet a t  
an interface idealized as a plane curve with unit tangent 5. It is really not essential 
that there be just one interface or that it be simply connected, but for convenience 
we shall think in terms of such a situation. The normal component of the velocity 
across the interface must be continuous because of (4) and equal to the normal 
component of the velocity of propagation of the interface itself. The tangential 
component of the velocity, however, is discontinuous and gives rise to the vortex sheet - 
strength y defined by " 

( 5 )  y = (u, - u,) * s^, 
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where u, (u,) is the velocity just below (above) the interface. An equation for y is easily 
obtained by taking the dot product of (3) with the tangent vector both in fluid 1 and 
in fluid 2 and then subtracting one from the other: 

(Vp2- Vpl).S^ = - (+u, -%u,). S^-g(pZ - f i ) J .  S^. 

Rewriting this slightly, using ( 5 )  and the abbreviations Ap = p,-p,, Ap = p ~ - f i ,  
A p = b - - - , p = + ( b + f i ) a n d  U = ~ ~ ( U , + U , ) ,  weobtain 

Here the subscript 1 (2) means the value as the interface is approached from below 
(above). The third term on the right will either vanish or be given in terms of the 
surface tension as we shall discuss shortly. From ( 1 )  the sheet velocity U is related 
to y by Birkhoffs (1954) integral formula 

1 1 2  x (x(S,t)-x(S’,t)) U = U(S, t)  = - P 2 y(s’,t) ds’, 2n I x(s, t)-x(s‘, t )  I 
where the principal-value integral is taken along the sheet. Note that, because of ( S ) ,  
(7) is an integral equation for y. Aswe have already mentioned, for the Rayleigh-Taylor 
problem one obtains an integrodifferential equation for y. This difference results from 
the total absence of convective acceleration (or ‘inertia’) terms in the Hele Shaw 
equations. 

When the interface is modelled as a row of point-vortex elements the circulation 
of the vortex a t  arclength S, is 

= ~ ( 8 , )  As, (9) 

where As is the spacing between vortices. The z-component of vorticity is then 

w ( ~ ,  t )  = x r, qx-x,(t)), (10) 

where xi is the position vector of elemental vortex i .  To compute the time evolution 
of the interface we calculate the sheet velocity from (8) and move vortex i according 

(11)  
to dx,/dt = U(si). 

Once moved, we iterate (7) with U given in principle by ( S ) ,  using the new sheet 
position, until convergence is obtained. Then we reassign vortex circulations. I n  
practice vortex velocities are not found by computing (8) as i t  stands but rather by 
the vortex-in-cell scheme as we have already explained. 

To specify the problem completely, i t  remains to relate the difference in pressure 
gradients in (7) to other properties. The simplest assumption is that  the pressures 
are the same on both sides of the interface, so that the last term would be identically 
zero (this implies that  there is no surface tension a t  the interface). For stably stratified 
flow this might not be a bad assumption, but for unstable stratification i t  is physically 
unreasonable, and leads to  numerical difficulties for the following reasons. It is found 
from linear stability analysis that, when the last term in (7) vanishes, the growth rate 
of a small disturbance is proportional to the wavenumber. Thus a disturbance of 
arbitrarily short wavelength will grow arbitrarily fast. I n  numerical calculations, 
however, one can, in general, only attain a finite spatial resolution. Hence modes with 
wavelengths shorter than the smallest scales resolved are misrepresented. If these 
modes have the fastest time dependence, serious errors may result. I n  effect the cutoff 
provided by the finite spatial resolution acts as a damping on the smallest scales. This 
damping may or may not be physically plausible. 
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By neglecting the viscous stresses a t  a moving interface in a real Hele Shaw cell, 
we can write the pressure drop approximately as 

where a i s  the surface-tension coefficient, R,, is the radius of curvature of the interface 
in the plane of motion (the (x, y)-plane, see figure 1) and R, is the radius of curvature 
in the direction perpendicular to  the parallel plates. We shall follow other workers 
(McLean & Saffman 1981) and assume that R, is constant. Then we get simply (cf. 

It is not a t  all obvious that this is a permissible assumption. We shall discuss i t  in 
more detail later. For flow in a porous medium the conditions a t  the interface are 
probably very different and more complicated owing to the dispersive nature of the 
medium. Early workers in oil-water flow (e.g. Richardson 1961) found i t  useful to 
define an effective surface tension, which was usually considerably larger than the 
surface tension for the same fluids when brought into contact outside the porous 
medium. 

I n  general the interface will be moving in some irrotational flow field Upot caused 
by the boundary conditions, or by a distribution of sources and sinks inside the 
domain under study. The velocity of the interface can then be separated into two 
parts Utot = U+ Upot, where U is the velocity induced by the vortex sheet (equation 
(8)). I n  the calculations described here the irrotational velocity field will consist of 
a uniform velocity Urn j ,  although the algorithm could easily accommodate a more 
general irrotational flow. I n  (11) we must now use Utot on the right-hand side. 
However, we shall make use of a frame of reference moving with velocity U, j .  As 
we shall see below, U ,  really only enters the problem if we need the true position 
of the interface in the 'laboratory' frame of reference. With U ,  added, (7)  becomes 

where we have used (13). The coefficient of j .  P has the dimensions of velocity, so, in 
order to non-dimensionalize the equations, we define a speed U ,  to be the absolute 
value of this constant coefficient : 

I n  order to reduce the number of variable parameters in the problem, we now 
proceed to  obtain a non-dimensional form of (14). We shall non-dimensionalize 
lengths in two different ways, each corresponding to different flow regimes. First, we 
assume that there exists some characteristic external length W which has a significant 
influence on the problem. Then W is a natural choice in non-dimensionalizing lengths. 
For an experimental setup of the type usually considered in the literature, the width 
of the cell is a natural choice for W .  For numerical simulations using periodic 
boundary conditions, W can be taken as the period, although it  does not completely 
correspond to rigid walls. With this choice of lengthscale we proceed as follows. Let 
s = s"W, U = OU,, Rl, = 8,, W and y = ?TIT,. Dividing (14) by U,,  we obtain an 
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equation for the non-dimensional vortex-sheet strength y :  

In  this equation, which in view of (8) is an integral equation for y ,  
A = -  A-A 

A+A 
is a viscosity ‘Atwood ratio’? and 

ab2 B =  
1211, w2p 

is a non-dimensional surface-tension coefficient. It can be interpreted as the ratio of 
the surface-tension force to the driving force, and for gravity-driven instability 
reduces to  the inverse of the ordinary Bond number. 

This form of the equation reveals many interesting properties of the flow. First of 
all, the quantity U ,  sets the timescale of the motion. The non-dimensional time 
t“ = IT, t /  W .  It can also be shown that for vanishing surface tension the sign of the 
quantity inside the absolute-value sign in (15) determines the stability of an initially 
flat interface to infinitesimal disturbances (Saffman & Taylor 1958). The viscosity 
difference multiplied by the initial velocity of the sheet and/or the density difference 
times the acceleration of gravity is the force (per unit volume) that causes small 
disturbances to either grow or be damped out. Note that, since the same combination 
appears in B,  A p O ,  can be replaced by &Apgb2 without affecting the equations. 
That is, according to (3) and (4) and the jump condition (13), a horizontal Hele Shaw 
cell with throughflow li, is equivalent to a vertical Hele Shaw cell with density 
stratification, so long as the boundary effects can be ignored. It should be pointed 
out that in a real experiment, where Ap might depend on the velocity of propaga- 
tion of the interface (Dussan V. 1979), this is not necessarily true (see also $4) .  The 
coefficient A (equation (17)) determines the influence of the induced velocities on the 
vortex-sheet strength. For A = 0 (no viscosity difference) there is no ‘feedback’ from 
the velocities, and i t  may be shown that for disturbances that have initial ‘up-down’ 
symmetry the interface will retain this discrete symmetry for all time. (For 17, + 0 
we must consider a coordinate system moving with veocity U ,  for this statement 
to be valid.) The case A = 0 is of course slightly unphysical, since we are postulating 
no difference in viscosity for a case where there is a difference in density. (One can 
obviously only achieve this limit by working with a gravitationally driven cell.) It 
is formally a very convenient limit, however, since, as we have just mentioned, (16) 
reduces from an integral equation to a simple algebraic relation. For A =I= 0 the 
interface no longer stays up-down symmetrical, with the tendency to  asymmetry 
becoming increasingly pronounced as A + f 1 .  It can also be seen that A and - A 
lead to  interfaces that are mirror images of one another. Therefore, when exploring 
solutions of these equations, it is sufficient to consider the range 0 < A d 1 .  

The role of the surface tension.coefficient B is best seen by using the result from 
linear stability analysis (Saffman & Taylor 1958; Chouke et al. 1959) that  the 
non-dimensional growth rate I? of a small-amplitude wave is given by 

5 = Z ~ k ( 1 -  B ( ~ K E ) ~ ) ,  (19) 

with k a non-dimensional wavenumber, k = k W ,  where k is the physical wavenumber. 

t The petroleum engineer may prefer the ‘mobility ratio’ ,LL.J~ to A .  Clearly these are in a 
one-to-one correspondence. 
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From this it is obvious that there is a wavenumber cutoff a t  
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E ,  = 1/27&, 

Emax = 1/Q l c .  

It is interesting to note that A does not appear in this expression. The term 
proportional to A in (16) is a second-order effect in the (small) amplitude, which, 
however, has considerable effect at finite amplitudes. With no surface tension there 
is not only no cutoff wavenumber; there is no natural lengthscale in the problem a t  
all. 

I n  numerical simulations the discretization imposes a limitation on the range of 
scales that  can be resolved. If the vortex sheet is modelled as a row of point vortices, 
the non-dimensional growth rate of a small disturbance to an initially straight 
interface is given by 

and a maximum growth rate occurs a t  

e = 2 7 4 1  -B(2nE)2) 1 -- , (20) ( 3 
where N is the total number of vortices in L waves. For B equal to zero there is now 
still a cutoff wavenumber Ec = 4N and a wavenumber Em,, = aN, corresponding to 
the fastest-growing wave (cf. Birkhoff 1954). I n  point-vortex simulations of vortex 
sheets i t  is therefore essential to  choose B such that the effects of this 'numerical 
surface tension ' are minimized. 

The above non-dimensional form (16) is obviously always valid, and is very 
convenient for numerical simulations, since one can always work with a domain of 
width unity. However, sometimes a different choice of the lengthscale W is possible, 
and in some sense more appropriate. When the length of the period, or the width of 
the cell, is much larger than the most-unstable wavelength, i t  seems reasonable to  
assume that the development of a disturbance is not affected by this length. Assuming 
no external lengthscale, the independent variables of the problem are the arclength 
s on the interface and the time t .  The parameters in the equations are U*, (and, 
of course, A ) .  This suggests the scaling 

where the prime denotes the non-dimensional variables. If s" and t" denote the 
non-dimensional variables as scaled previously (i.e. using the external lengthscale W )  
then we have : i 

@ '  
s" ' &, t = -  

Our equations are now easily rewritten in terms of the variables s', t' by simply setting 
B equal to unity in the equations written in terms of s", f. Since B ,  or the surface 
tension, can be scaled out in this way, and we have assumed that external lengthscales 
are unimportant, it  follows that various properties of the flow field must be 
independent of the surface tension. I n  particular, if the interface develops into an 
asymptotic state where the ratio of the width of a finger of one fluid to the width 
of fingers of the other fluid is some constant, then the value of this constant must 
be independent of surface tension. Our interest is primarily in interface motion where 
this scaling is valid, and the only parameter is the viscosity ratio A .  

In  their investigation of the effects of surface tension on a single finger, McLean 
& Saffman (1981) found the ratio of finger width to channel width to decrease with 
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decreasing surface tension. Their single-finger solutions do not belong to the regime 
where our scaling is valid. Note that imposing periodic boundary conditions is not 
by itself enough to remove the effects of an external lengthscale. For large surface 
tension (or B)  the interface can be stable, and the period itself provides an external 
lengthscale. We shall return in $3.2 to the evidence that we have accumulated 
indicating a regime of ‘statistical fingering’ in which the geometry of the interface 
is independent of surface tension. 

2.2. Numerical considerations 
The numerical code used is an elaboration of the vortex-in-cell code described earlier 
by Aref & Siggia (1980, 1981). Most of the numerical calculations were performed on 
the CRAY-1 computer a t  the National Center for Atmospheric Research. The original 
code was written for inviscid constant-density fluid, so the circulation of each vortex 
was kept constant. Here that is no longer true, as we have explained, and the 
circulation of each point vortex must be updated a t  every time step. A finite-difference 
approximation to the equation (16) for the circulation is (cf. (9)) 

r = 2(A(uAx + vAy) Ay + BA( l/Rll)). (21) 

Here the - (+)  sign refers to (un)stable stratification. We have written W-s^ as 
(UAX + vAy)/As, where Ax (Ay) is the change in x (y) coordinate over an increment of 
arclength As. Similarly, A(l/RII) is the change in l/Rli over arclength As. 

For A = 0 it  is a simple matter to  update the circulations, but for non-zero A an 
iterative procedure is necessary. The circulation is first calculated using the velocities 
a t  the previous position (taken as zero initially). Once new velocities have been found 
the circulation is updated and this is continued iteratively until the values of the 
velocities converge. The predictor-corrector scheme used for the time stepping 
(Shampine & Gordon 1975) requires the evaluation of the velocities twice per time 
step using in both cases the above iteration. This iteration is similar to the one used 
by Baker et al. (1980). For sufficiently smooth interfaces the iteration converges very 
rapidly ( 2 4  iterations), but for a strongly deformed interface (and a value of A close 
to unity) the number of iterations required increases dramatically (to more than 20). 
In some cases, particularly for closed contours (‘bubbles’) it was found that the use 
of a relaxation parameter (equal to 0.5) greatly reduced the number of iterations 
needed, but for other configurations this saving was not experienced. A systematic 
search for an optimum way of using a relaxation parameter has not been performed, 
but i t  is plausible that significant improvements can be achieved by pursuing such 
a search, Another way to reduce the number of iterations is to improve the first guess 
of the values of the velocities by not simply taking them equal to the values a t  the 
last positions. An accelerated iteration of this type is used in Baker et al. (1982). 

As the vortex sheet moves, it is stretched unevenly along its length. Somewhere 
the vortices will be far apart, elsewhere they will become clustered together. Since 
the representation by a row of discrete vortices introduces a stabilizing effect, 
somewhat like surface tension, as discussed above (see also Birkhoff 1954), a few 
vortices on a stretched part of the curve may lead to high apparent surface tension, 
as well as poor representation of that part of the interface. Therefore, it  is necessary 
to redistribute the vortices evenly along the interface a t  every time step (for a 
discussion of the effect of redistributing see also Moore 1981). In the redistributing 
scheme adopted here, the interface is assumed to consist of straight-line segments 
between the points (a polygon line). The total length is calculated first, and then the 
points are redistributed onto the polygon. This rather crude redistributing scheme 
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FIGURE 2. Non-dimensional growth rate c? of a small-amplitude wave for A = B = 0. The prediction 
of linear stability theory is c?/2xL = 1, where L is the non-dimensional wavenumber. The line 
c?/2nL = 1 - 2L/64 is the predicted result for an interface modelled as a row of vortices, 64 per unit 
length. The growth rate calculated using a 642 grid and 1024 particles is shown by + . 

was considered to be sufficiently accurate, since in practice the distance between 
points is usually much less than a grid spacing, and the error introduced by 
redistributing is expected to be small compared with the errors introdued by the 
vortex-in-cell grid. The updating of the vortex strengths, the iteration when A =+ 0 
and the redistributing constitute the main additions that were made to the original 
vortex-in-cell code for the calculations performed here. In  the calculations of Aref 
& Siggia (1980, 1981) i t  was argued and checked that small-scale behaviour did not 
influence the configuration of large-scale vortex regions. Hence, in those calculations 
it was considered legitimate to allow the initial vortex sheet to break up. Here, since 
we are modelling a physical interface and similar vorticity concentration does not 
occur, this would not be permissible, and a continous curve must be maintained at 
all times. 

In  order to gain some understanding of the limitations of the code it was tested 
in various ways. From linear stability analysis i t  is seen that the error in the growth 
rate of a disturbance to an initially flat interface is of order Ax when a direct summation 
of vortex interactions is used (cf. (20)). Here Ax = W / N  is the distance between 
neighbouring vortices. When the velocities are calculated on a grid, the grid spacing 
determines the resolution. The growth rate of a small wave was calculated on a 642 
grid for various wavenumbers and B = 0. In  figure 2 this growth rate is compared 
with the growth rate for the direct-summation method as predicted by linear stability 
analysis. The number of vortices was many times the number of grid spaces. It 
is seen from the figure that as far as predicting the growth rate of an initially 
flat interface is concerned the vortex-in-cell scheme is comparable to the direct 
summation method. I ts  advantage is of course the computational economy for highiy 
contorted interfaces. The 'smearing out ' of the vorticity onto the grid gives the vortex 
sheet a finite thickness of about one grid spacing. Thus, when the wavelength of a 
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disturbance is comparable to a grid spacing, it will ‘feel’ the stabilizing effect of this 
thickness. For low wavenumbers the results are actually better than those obtained 
by direct summation. This might be due to the anisotropy of the velocity field with 
respect to the grid (Aref & Siggia 1980) or to small-scale disturbances introduced by 
the grid which are growing faster than the initial wave. 

In  order to investigate the effects of numerical errors on the performance of a 
computer code, it is common to run the results of an initial-value problem backwards 
to test for ‘reversibility ’. I n  our case this is not possible for the following reason. When 
the code is run forward it is necessary to use non-zero surface tension to stabilize small 
disturbances. When the code is run backwards, the previously unstable long- 
wavelength disturbances become stable, but the small-scale disturbances, which the 
surface tension stabilized before, become unstable. This can easily be seen in the linear 
stability analysis by replacing t by -t. Since small-scale disturbances are always 
introduced by the grid, difficulties are unavoidable. Working on the hypothesis that 
the large-scale structure is not heavily affected by the surface tension, we ran the 
code backwards but changed the sign of B, such that the small scales were still 
stabilized. The relaxation of the mixed layer that  we computed in this way was close 
to being the reverse of its initial growth, but, since the surface tension added to the 
stabilization, it relaxed a bit more quickly than i t  had grown. A small disagreement 
in interface geometry observed during ‘forward’ and ‘backward’ evolution could also 
be attributed to the effect of surface tensi0n.t The width of the mixed layer used for 
this calculation was roughly five times the wavelength of the most unstable 
disturbance when we reversed the calculation. The interface was of the type shown 
later in figure 3 (a)  (but not quite as advanced in evolution). 

The effect of resolution was considered by running the same initial configuration 
on both a 642 grid and a 2562 grid. The shape of the interface and quantitative 
measures collected were compared at large amplitude and were found to be in close 
agreement. The interface on the larger grid (four times better resolved) was, however, 
observed to develop a little faster. This is as one would expect : a poor resolution causes 
an ‘apparent’ surface tension that has a stabilizing effect. In most of the runs 
performed here we have chosen the surface-tension coefficient B large enough so that 
subgrid scales are damped, yet so small that one must expect the grid effect to slow 
the evolution a little. There is a trade-off between accuracy and the range of scales 
that one can simulate. The justification lies in the observation just made, that, 
although the evolution may be slowed a bit, the same (and, hence, presumably 
correct) behaviour will be observed. In  this sense we claim that the results presented 
here have been checked for ‘ convergence ’. 

The appearance of occasional high-wavenumber waves on the interface, common 
to many vortex sheet simulations (cf. Baker et al. 1982) was observed in runs 
for A = 1 (figure 7). These waves, which appear on the sides of the fingers, have 
wavelengths equal to approximately two grid spacings, the smallest resolvable 
wavelength in our simulations. They never reach large amplitudes and usually do not 
persist for many time steps. Since they do not seem to influence the evolution of the 
large-scale structure, i t  was decided that no artificial smoothing would be necessary. 
However, for interfaces with high surface tension that are compressed strongly, such 
as the rear of a circular bubble or the tip of a retracting finger, we have encountered 

t The rates of relaxation due to gravitational stability and to surface tension are quite different. 
Straightforward dimensional analysis shows that the width of the mixed layer should decrease 
proportionally to t for a gravitationally stable interface, but as t-f when surface tension is the only 
driving force. 
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disturbances that apparently can grow to large amplitude. In  the simulations 
presented here the interface is constantly being stretched, and such phenomena are 
not observed. We hope to obtain a better understanding of the issues mentioned here 
as we gain experience with this type of code. 

In  conclusion we wish to emphasize that, although vortex methods based on direct 
summation to produce the values of the boundary integrals can probably be made 
more accurate (by using a higher-order integration formula) than the scheme we are 
pursuing, they are subject to the O ( N 2 )  operation count problem. And although this 
operation count is much better than earlier implementations of boundary integral 
techniques (Baker et al. 1980, 1982) i t  still seems to preclude various flow regimes 
of considerable physical interest. 

3. Numerical results 
3.1. Qualitative observations 

In  order to investigate the effect on the evolution of the interface of varying the 
viscosity ratio A (equation (17)) a number of runs were performed with 1024 particles 
on a 642 grid. The initial condition, which was the same for each run, consisted of 
an arbitrary collection of small-amplitude waves of various wavelengths. The surface 
tension was chosen such that the most-unstable wavelength (according to linear 
stability theory) was about eight grid spacings. The results are shown in figure 3.  In  
each case we show a ‘final’ stage of the interface at such a value of the width of the 
mixed layer that the upper and lower boundaries of the computational box have not 
yet had any noticeable effect. The initial state in the same plot would simply be a 
horizontal line across the frame. (Later, in figures 5-7 we show a series of pictures 
of one interface as i t  evolves.) In  all our pictures essentially ‘raw data’ is being 
displayed. The vortex elements have simply been connected consecutively by a 
polygon line to form the plotted interface. No spline or other interpolation is used. 

For small amplitudes (less than one wavelength of the dominant instability, say) 
there is little visible difference between the different cases. However, as the amplitude 
of the fingers becomes larger, we see important differences. With no viscosity 
difference ( A  = 0, figure 3 a )  all the initial fingers grow to large amplitude, although 
some grow a bit faster than others. The difference in finger length becomes more 
pronounced as the mixed layer widens. The evolution a t  very large amplitudes is 
demonstrated more comprehensively later (see figure 5 ) .  An obvious feature of this 
flow is that it is on average symmetric about the original flat interface position, i.e. 
on average the fingers of the top fluid penetrate the bottom fluid as much as fingers 
from the bottom penetrate the top. When the viscosity difference is increased, this 
symmetry is no longer observed (see figures 3b-f). The less-viscous fluid penetrates 
further into the more-viscous one, and the less-viscous fingers are more varied in 
length than the more-viscous fingers. At later times the longest fingers produce a 
‘bubble’ a t  the end connected to the ‘mother’ fluid by a long and narrow neck. 
Figures 3 (a ,  b )  show that this tendency to form bubbles is more pronounced for 
A = 0.5 than for A = 0. Also for small A the bubbles are almost circular in shape. 
As A increases they become more elongated (see also figure 4). It is likely that in some 
cases these bubbles will eventually detach and propagate into the more-viscous fluid. 
Although many of the ‘necks ’ seen in our simulations are dynamically inert, breaking 
of a narrow neck is not allowed by the coding. Bubble detachment could be 
incorporated in future work, however. (N. J. Zabusky has introduced the term 
‘topology change ’ for algorithms that accomplish such tasks.) In  accordance with 
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FIQURE 3. Advanced stage of interface evolution for calculations on a 642 grid using 1024 vortex 
elements. Parameter B = 2 x for all panels and (a) A = 0; (b) 0.5; ( c )  0.75; (d) 0.85; (e) 0.95; 
(f) 1. The initial condition was the same for all values of A.  
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FIGURE 4. The emergence of a single long finger on an interface with A = 1 as in the Saffman-Taylor 
experiment. The width of the computational box is 64 grid spaces and B = 2 x 

the asymmetry mentioned above, this formation of necks and bubbles is most 
pronounced on one side of the mixed layer when A > 0. As A approaches unity the 
bubbles become larger. 

The smallest fingers in figures 3 (d-f) reach finite amplitude, but then diminish as 
larger fingers take over. Hence, in the final state in figs 3 (d-f) the smallest fingers 
are much shorter than the small fingers in figures 3 (a-c), whereas the longest fingers 
are of comparable length in all pictures. It is worth observing that for A close to unity 
there seem to be large changes in the interface configuration for small changes in A 
(for a fixed initial condition). Compare figures 3(a ,  b )  with figures 3 ( e ,  f ) .  There is 
as far as we can see no obvious mathematical explanation based on (16) of this 
sensitivity as A approaches unity. It may be mentioned, however, that  the case A = 1 
corresponds to one of the fluids having essentially zero viscosity, and this is not 
physically consistent with the derivation of the Hele Shaw equations, which rests 
upon the condition that both fluids are viscous. Physically, if one of the fluids were 
inviscid, one should use the Euler equation to describe its motion. 

We know of no experimental investigation of the Taylor-Saffman instability for 
a gravitationally unstable interface between immiscible fluids of similar viscosity. 
However, even though there is no diffusion through the interface in the model 
considered here, the results show strong similarities to  the miscible-fluid experiment 
of Wooding (1969) (compare figure 3(a) ,  and also figure 5,  with Wooding’s figure 2). 
The growth of many fingers to  large amplitude and the up-down symmetry of the 
mixed layer are the predominant features both in Wooding’s experiment and in our 
simulations for the case of no viscosity contrast. We also see how a t  later stages 
some fingers overtake others, and thus the number of long fingers is decreased (this is 
discussed in more detail later). The small fingers do not disappear in our simulations, 
but in the miscible fluids experiment they do diffuse away. 

The run for A = 1.0 (figure 3 f )  was rerun in a longer computational box to large 
amplitude. Results are shown in figure 4 for four stages of the evolution. The first 
two precede figure 3 (f) in time, the last two succeed i t .  (The longest finger has been 
shifted to the middle of the box for the display in figure 4.) The continued evolution 
of the interface is now very reminiscent of the Saffman & Taylor (1958) experiment. 
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First we see growth of initial disturbances whose dominant wavelength is determined 
by surface tension and is well predicted by linear stability theory ($2). I n  later stages 
fewer (highly nonlinear) fingers take over, and the final stage consists primarily of 
one finger that propagates without much change in shape. In  the last two stages shown 
in figure 4 there are also two small fingers whose amplitudes remain essentially 
unchanged while the large, dominant finger doubles in length. We assume that the 
small fingers will eventually go away. This reduction from (in this case) eight initial 
waves to a single finger is in good qualitative agreement with experiments on 
immiscible fluids with a large viscosity difference. 

There is a celebrated conjecture (Saffman & Taylor 1958; McLean & Saffman 1981) 
for this type of flow - namely that the width of the propagating finger should be 
exactly one-half the channel width for sufficiently low surface tension (and should in- 
crease with increasing surface tension). Our finger is thinner than half the width of 
the cell. It is difficult to draw any conclusions from this.? The analytical, single-finger 
solutions are unstable (McLean & Saffman 1981) so that it is not clear that  they 
should appear a t  all in an initial-value calculation. The fact that something very 
similar is seen experimentally may suggest that  the appearance of long single fingers 
occupying half the channel depends, subtly, on effects not explicitly present in the 
Hele Shaw equations. The fact that we have periodic boundary conditions along the 
sides instead of the somewhat ill-defined rigid boundaries of the experiments may be 
significant. Additional comments may be found in $4. Similar remarks can be made 
for the periodic array of fingers found by Saffman (1959). Note, incidentally, that 
these are updown symmetric solutions with A = 1. They would definitely not emerge 
in initial-value calculations of the type reported here. 

Runs on a 642 grid are too small for any meaningful averaging to be done. We 
therefore performed additional simulations using 8192 particles on a 2562 grid. Again 
the surface tension was chosen in such a way that grid-related effects should be 
relatively small. Figures 5 7  show the evolution of initially flat interfaces perturbed 
by an irregular multiwavelength disturbance of very small amplitude. Only that 
portion of the computational domain containing the interface is shown. The full 
domain is as wide as it is long. The runs all had the same initial conditions but 
different viscosity ratios A .  As observed for the runs on the 642 grid, there is not 
much difference for small, but still highly nonlinear, amplitudes (compare figures 5a, 
6a and 7a).  The general behaviour seen in the runs made on a smaller grid is again 
observed: increasing asymmetry with increasing A ,  and bubbles on the finger ends 
that are smallest for A equal to zero. Fewer and fewer fingers grow to large amplitude 
as A approaches unity. However, we now also observe other phenomena, notably the 
merging of fingers and finger splitting. These are true ‘collective effects’ that require 
a numerical scheme capable of following many fingers simultaneously. 

For a typical merging follow the evolution of the first and second finger from the 
right in figure 6. By the time the interface has evolved to the stage shown in the third 
panel (figure 6c),  these fingers have merged. Notice that merging always takes place 
between fingers of unequal length. The shorter finger is drawn into the bubble a t  the 
end of the longer finger from below. Splitting (bifurcation) may also be seen in 
figure 6. Follow the evolution of the short and wide finger (tenth from the left). 
Note that when two fingers merge in our simulations the portion of the interface 

t G. R. Baker (private communication) has recently produced a single finger of one-half the 
channel width using similar numerical techniques with zero surface tension. However, Baker’s 
initial conditions contained just  one mode of the ‘right’ wavelength. There was no wavenumber 
selection as in figure 4. 
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FIGURE 5 .  Stages in the evolution of an unsteady interface. The initial condition consisted of an 
arbitrary collection of large-wavenumber wave8. B = 1.25 x and A = 0. Only the portion of 
the computational box containing the interface is shown. Note the updown symmetry of the mixed 
layer and how some fingers grow a t  the expense of others. 
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FIGURE 5 .  Stages in the evolution of an unsteady interface. The initial condition consisted of an 
arbitrary collection of large-wavenumber wave8. B = 1.25 x and A = 0. Only the portion of 
the computational box containing the interface is shown. Note the updown symmetry of the mixed 
layer and how some fingers grow a t  the expense of others. 
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FIGURE 7 .  Same initial condition (and value of B)  as in figures 5 and 6 but A = 1. Only a few fingers 
grow to large amplitude; the rest diminish. The fingers are streamlined in shape, and neither 
merging nor splitting is observed. The large wavenumber undulations on the sides of some short 
fingers are numerical artifacts of' uncertain origin. 
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consisting of their common boundary is carried on in the calculation. In principle 
a ‘ topology-change ’ algorithm should be invoked here to erase this double-layered 
boundary. However, as with the very thin necks attached to the bubbles, we have 
not implemented such an algorithm a t  this time. Indeed, we have felt that the good 
representation of these boundaries is an indication of the physical soundness of the 
simulations. The application of a ‘ topology-change ’ algorithm would, of course, 
change the geometry of the interface by more than just removing double-layered 
boundaries. The spike left behind would quickly be pulled back by surface-tension 
forces, leaving a somewhat shorter finger. The numerical modelling of this breaking 
of narrow necks implies modelling of molecular-scale phenomena and the criteria for 
breaking are undoubtedly highly material dependent. 

Merging seems to be much more common than splitting, and is one element in the 
reduction in the number of fingers observed at large amplitude. However, most of 
the reduction seems to be due to a different process, which is discussed below. In  the 
run with no viscosity difference ( A  = 0) merging takes place on both sides of the mixed 
layer, but for non-zero A merging only occurs between fingers of the less-viscous fluid. 
We also observed that splitting mainly occurs for fingers of the less-viscous fluid. Note 
that we do not observe any splitting of the finger tips as in the experiment of 
Wooding (1969). In  our simulations splitting occurs in the middle of the mixed layer, 
that is, the fingers that split are not growing very rapidly in length. Some splitting 
also seems to occur when a long and narrow finger develops a ‘kink ’, which then starts 
to grow parallel to the original finger (see e.g. the thirteenth finger from the right 
in figure 5 ) .  We suspect that the splitting of finger tips seen in Wooding’s experiment 
is in part due to the interdiffusion of the two fluids used. 

The process through which the growth of some fingers is reduced seems to be as 
follows : if, through a perturbation, a finger becomes shorter than its neighbours, this 
difference in length increases and it never catches up with them again. This reduction 
in growth rate of short fingers takes place on both sides of the mixed layer when there 
is no viscosity difference ( A  = 0). For non-zero A there seems to be a similar reduction 
in growth rate among the fingers of the less-viscous fluid, but the effect seems much 
less pronounced among the fingers of the more-viscous fluid. 

3.2. Statistical properties and scaling 
For flow with complicated small-scale structure like the fingering problem, we are 
obviously mostly interested in averaged quantities. Apart from being too complicated 
to allow an exact description, i t  is usually also unnecessary to know the motion of 
each individual finger. A statistical description of the motion of the interface includes 
the width of the mixed layer and profiles of various averaged quantities, such as 
viscosity, density and the mass flux of each fluid. As an indication of the ‘degree of 
mixing’ the stretching of the interface is also required. For interfaces with inter- 
diffusion or chemical reaction the degree of stretching is one of the most important 
quantities. 

By an average of field quantity f(x, y, t )  we shall mean a spatial average in x for 
fixed y and t ,  viz 

(22) 
l W  cf> = n j  f(%Y,t)dG 

0 

where W is the width of the computational box. Clearly # depends on y and t .  The 
averages of quantities such as the viscosity or the density that are constant within 
each fluid can be written as 

(23) ( a )  = I ,  a, + 1, a,, 
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FIGURE 8. The width of the mixed layer m. time for A = 0 and several values of the surface tension 
B. Width and time are scaled as described in $2.1. The symbols correspond to the following values 
of B :  0 ,  1.25 x 0, 1.25 x (different initial conditions); x ,  2 x A, 4 x lo-*; 0, 
6 x 

where a,, a2 are the two constant values of quantity a ,  and Ij(y) is the average of 
a function i i(x,  y) defined as 

I~ 

1 inside fluid j, 
0 otherwise. i j ( X , Y )  = 

Obviously I l + I z  = 1 .  The function I,(y) is therefore sufficient to determine the 
profiles for averaged material properties. The average mass flux of each fluid can also 
be determined from I ,  by the one-dimensional continuity equation. However, I ,  
cannot determine the degree of stretching of the interface. 

In  $2 we derived the appropriate scaling for the evolution of the interface when 
the only important lengthscale is the one determined by tLe surface tension. In  figures 
8 and 9 we check this scaling. Figure 8 shows 8' = 8/& versus t' = ;/@ for several 
values of B,  A equal to zero, and various initial conditions. Here 0 = OW is the width 
of the mixed layer, taken simply as the distance between the tips of those two fingers 
that have propagated farthest into the upper and lower fluid. Although there is some 
scatter at early times due to differences in initial conditions, and differing resolutions, 
it seems fairly safe to conclude that our scaling ($2) is indeed correct. The growth 
rate goes to a constant independent of B. The growth rate depends on A and on U ,  
(equation (15)) since, in terms of physical variables, if 8' - t ' ,  then 6 N U* t (see $2).  
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FIGURE 9. Relative stretching of the interface us. width (scaled with B) for A = 0 and several values 
of B.  The run represented by open dots initially had fewer fingers than the one represented by solid 
dots. The symbols correspond to the runs in figure 8. 

The thickness of the mixed layer gives rather limited information about the 
structure of the interface. I n  figure 9 we have plotted the stretching of the interface 
( L  - &)/Lo versus the non-dimensional width 8' = g/B, also for A equal to  zero. Here 
L is the length of the interface a t  width 8, and Lo is the initial length. The scaling 
is not nearly as good. However, we note that particularly at large amplitudes, where 
several finger mergings have occurred, the true reduction in interface length due to 
merging is not represented by the code, since we have not removed double-layered 
portions of the interface. The run denoted by open circles in figure 9 initially had 
fewer fingers than the one denoted by solid dots, and, since mergings took place in 
the latter but not in the former, the total physical lengths are probably closer than 
the graph indicates. 

Having shown that in the regime we are considering the surface tension can be 
scaled out, we proceed to investigate the effect of A. In  figure 10 we have plotted 
the width 6' versus time t' for different values of A but the same B,  and the same 
initial conditions. The growth rate shows only a weak dependence on A ,  except for 
A close to unity, where i t  is larger. It was checked explicitly that this difference in 
growth rate is not due to the fact that  the fingers for A = 1 are bigger, and therefore 
better resolved, by running similarly resolved fingers for A = 0 and A = 1. 

I n  order to achieve an analytical estimate of the rate of growth of the mixed layer, 
let us assume that i t  can be obtained from the velocity of a bubble of fluid 1 moving 
in fluid 2 and the velocity of a bubble of fluid 2 moving in fluid 1. It can be shown 
(Taylor & Saffman 1959, 55) that  a circular bubble in unbounded flow will rise (or 
fall) with speed U,,  so we have d8'ldt' = 2, in our non-dimensional variables, 
independent of A .  This is close to the growth rate that  we compute for A = 0 and 
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FIGURE 10. The width 
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FIGURE 11. Relative stretching of the interface vs. width (scaled by &) for B = 1.25 x Line 
patterns correspond to the runs in figure 10. 
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FIGURE 14. Check of scaling prediction (25) for I(y, t ) ;  B = 1.25 x and A = 1 : 
-, figure 7(6);  ---, 7 ( c ) ;  -.-, 7 ( d ) .  

A = 0.5, where there is indeed a formation of nearly circular bubbles on the fingertips. 
The reason that the growth rate is considerably higher for A = 1 is probably related 
to the different (more ‘streamlined’) shape of the fingers. This is in agreement with 
Taylor & Saffman’s (1959) result that  the velocity of a bubble increases as i t  becomes 
longer and thinner. 

I n  figure 11 we have plotted the stretching of the interface versus the width for 
the same runs as in figure 10. Again the A-dependence is strongest for A close to unity. 
This dependence on A is easily understood from the pictures of the development of 
the interface. The total length of the interface divided by twice the width of the mixed 
layer can be thought of, roughly, as the mean number of fingers. As shown above 
the width grows linearly with time, independent of the surface tension and only 
weakly dependent on A. So, if all fingers grow equally, there is no reduction in the 
mean number of fingers, and the total length of the interface must grow linearly with 
the thickness. If there is a reduction in the mean number of fingers, either because 
some fingers stop growing or because of merging, then the growth rate of the total 
length is slowed down. Where the reduction in number of fingers is strong, then the 
deflection from linear growth must be large, and this is indeed observed for A close 
to unity. Notice that,  if the interface developed in such a way that its ‘small-scale 
structure’ (i.e. number of fingers) scaled with the width, then the interface length 
would not increase in figure 11. From our simulations i t  is clear that  this is not so. 

Even though the detailed small-scale structure does not scale with the width of 
the mixed layer, it  is quite possible that averaged quantities do. I n  figures 12-14 we 
show the mean density profile I1 (see (23)), scaled with the width of the mixed layer. 
We are testing the assumption 

~I(Y? t )  =f((Y--yrnin)lO; A), (25) 
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where ymin is the smallest y-coordinate of points on the interface. Since A is expected 
to have a significant effect on I,, we have plotted I ,  separately for A = 0, A = 0.5 
and A = 1 .  From the figures it seems reasonable to assume that the mean-density 
profile does indeed scale with the width of the mixed layer. The mean value of I, can 
be interpreted as a measure of the average, relative finger width. Since it is a ratio 
of two lengths, i t  must be independent of B,  the surface-tension parameter. There 
seems to be a slight dependence on A,  with the average, relative width of the fingers 
of the less viscous fluid decreasing as A increases. 

Since the difference in viscosity causes the growth of fingers to be impeded more 
on one side of the interface than on the other, as we have discussed, we expect a steep 
‘ mean-density profile ’ on the side where all fingers grow equally (the less-viscous-fluid 
side). On the more-viscous-fluid side of the interface, where the lengths of the fingers 
are more unequal, we expect a more gradual change of the x-averaged density. For 
A = 0 the profile is symmetric, in the sense that the curve in figure 12 looks the same 
if turned upside down, and we cannot distinguish between the two sides of the mixed 
layer. For A = 0.5 (figure 13) the density profile is already quite asymmetric, and 
for A = 1 (figure 14) the difference between the less-viscous and the more-viscous sides 
is immediately apparent. A remarkable feature in the profile for A = 0 (figure 12) is 
the ‘bump ’ in the middle. By looking at the corresponding pictures for the evolution 
of the interface (figure 5) we see that this ‘bump’ is due to the bubbles at the ends 
of the fingers. 

4. Discussion and conclusions 
Traditionally studies of the TayloI-Saffman instability have been concerned with 

the shape of a single long finger in a channel. Our investigations, on the other hand, 
have focused on the flow regime where boundary effects are negligible. We have 
derived the appropriate non-dimensional form of the equations, containing two 
parameters: A ,  the Atwood ratio of the viscosities, and B, the surface-tension 
coefficient non-dimensionalized by other flow parameters. For small-enough B we 
showed that the equations can be resealed so that B does not appear explicitly and 
the only parameter is A .  Our numerical simulations of the evolution of an interface 
show a strong dependency on A .  This dependency on the viscosity ratio manifests 
itself mainly in the way that the fingers interact with one another, rather than in the 
precise shape of individual fingers. The wavenumber of the most-unstable wave on 
a flat interface is independent of the viscosity ratio A ,  but the number of disturbances 
that grow to highly nonlinear amplitudes depends very strongly on this parameter. 
The general observation is that by varying A the number of fingers of the less-viscous 
fluid that penetrate into the more-viscous fluid can be significantly reduced, but 
the number of fingers of the more-viscous fluid that penetrate into the less-viscous 
fluid is not affected strongly. Finally, we believe we have observed a subtle secondary 
‘instability’ in the flow regime where one has several competing fingers of finite 
amplitude. 

Investigating the possibility of simple scaling, we find that the average ‘density 
profile’ does seem to scale with the width of the mixed layer, but, as far as the 
small-scale structure is concerned (that is, the number and shape of fingers), scaling 
is much less certain. A simple scaling assumption is that the interface geometry can 
be described by a relation of the form 

= F(-) X 

ol-aga 
2 
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where 6 is a fixed length, e.g. the wavelength of the most-unstable wave (on the initial 
interface). Here we assume for simplicity that y is a single-vdued function of x. This 
is true during the initial stages of evolution. If a = 0 (26) corresponds to a simple 
stretching of the fingers that  appear initially. For a =  1 an interface evolving 
according to (26) would display a sufficiently large reduction in the number of fingers 
that  the interface length would remain constant. From our simulations we may 
roughly identify a - 0 with A = 0 and a - 1 with A = 1, if the above scaling is valid. 
However, for a =  1 the scaling law (26) describes a reduction in fingers with a 
mechanism that is quite different from the one actually observed in our simulations. 
Furthermore, averaged quantities (like 11) for an interface that develops according 
to (26) are independent of a, which in turn determines the A-dependency. This is again 
in contradiction to our numerical results. We have been unable to obtain a scaling 
form that provides a better description of our simulated interfaces. 

The rate of stretching is obviously proportional to the number of growing fingers, 
and since there is a strong reduction in the number of fingers for A = 1 ,  it is not certain 
that one can expect a constant rate of stretching in that case. If the interface for A = 1 
continues to develop fewer and larger fingers, it  must eventually feel the presence 
of external boundaries, and then the scaling of $2.1 ceases to be valid. If this is the 
case, there is no asymptotic state for A = 1 in the many-finger flow regime, and we 
are only observing transient development. However, for very wide fingers secondary 
Taylor-Saffman instability might be possible a t  the finger tips. In  order to observe 
that, a considerably lower surface tension (or a bigger finger) than obtained in our 
simulations is necessary. 

The equations considered in this paper omit several complications that must be 
faced in applications. The two most obvious additions to the primitive Hele Shaw 
equations are interdiffusion and, in the context of the Darcy law, variable saturation. 
Both of these effects are not easily handled by a code of the type used here. The 
problem of variable saturation has been studied by Glimm, Marchesin & McBryan 
(1 980). They use a moving finite-element code coupled with the so-called random-choice 
method. For the interdiffusion problem it is also likely that some form of a moving 
grid is necessary. 

In  the derivation of our model equations two essential simplifications of the 
boundary conditions a t  the interface have been made. First, we have completely 
neglected the three-dimensionality of the flow there. It is difficult to estimate the 
influence of this simplification, but it seems reasonable to assume that the modification 
of the flow is less than a t  a rigid boundary. In  any case, this is a complication that 
is not accessible to our numerical method. The second simplification of the interfacial 
conditions is the assumption of constant wetting angle. The effect of this assumption 
is probably most serious for large viscosity difference and a very small gap between 
the plates. It is observed experimentally that the contact angle for an advancing 
interface (say air replacing oil) is smaller than for a retreating one. The determination 
of this angle is a non-trivial problem and far from being completely solved (see the 
review by Dussan V. 1979). However, given the contact angle as a function of the 
velocity, this effect can easily be incorporated into our code. A velocity-dependent 
pressure drop across the interface will introduce a third non-dimensional coefficient 
into the problem (in addition to A and B)  and it will no longer be true that a 
gravitationally unstable Hele Shaw cell is equivalent to a velocity-driven one. We 
intend to perform a quantitative study of this effect by assuming simple forms for 
the pressure drop function. Additional complications arise when one fluid, as it is 
replaced by the other, leaves a film on the glass plates. If this film is of constant 
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thickness, its effect is easily taken into account (McLean & Saffman 1981). However, 
such a film may not have constant thickness. 

If the change in material properties is gradual, and not abrupt, we can model the 
flow using many interfaces as long as the properties of each material point are 
approximately constant. That is, diffusion must be much slower than the velocities 
of the interfaces. Variable surface tension along the interface(s) can also be handled. 
Finally, our code can be modified to accommodate potential flows different from the 
simple uniform flow used here. Studies of some of these extensions are already 
under way and will be reported in future publications. 
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